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Abstract: Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project
has collected more than 2000 ozone profiles from a dozen tropical and subtropical sites using
balloon-borne electrochemical concentration cell (ECC) ozonesondes. The data (with
accompanying pressure-temperature-humidity soundings) are archived at:

<http://croc.gsfc.nasa gov/shadoz>. Analysis of ozonesonde imprecision within the SHADOZ
dataset [Thompson et al., 2003a] revealed that variations in ozonesonde technique could lead to
station-to-station biases in the measurements. In this paper imprecisions and accuracy in the
SHADOQOZ dataset are examined in light of new data. When SHADOZ total ozone column
amounts are compared to version-8 TOMS (2004 release), discrepancies between sonde and
satellite datasets decline 1-2 percentage points on average, compared to version 7 TOMS.
Variability among stations is evaluated using total ozone normalized to TOMS and results of
laboratory tests on ozonesondes (JOSIE-2000, Jiilich Ozonesonde Intercomparison Experiment).
Ozone deviations from a standard instrument in the JOSIE flight simulation chamber resemble
those of SHADOZ station data relative to a SHADOZ-defined climatological reference. Certain
systematic variations in SHADOZ ozone profiles are accounted for by differences in solution
composition, data processing and instrument (manufacturer). Instrument bias leads to a greater
ozone measurement above 25 km over Nairobi and to lower total column ozone at three Pacific
sites compared to other SHADOZ stations at 0-20°S.

Index Terms: 0394 - Atmos Structure & Composition - Instruments and techniques; 3309 -
Climatology (Meteorology & Dynamics); Regions - 9305, 9325, 9340, 9355/Africa - Atlantic -

Indian Ocean - Pacific Ocean; 3394 - Meteorology - Instruments
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1. Introduction. Insights from the first three years’ SHADOZ ozone data

1.1. Tropical Ozone Profiles: Needs and Status.

In the past 15 years there has been interest in enhancing the number of tropical ozone
soundings because important scientific issues are hard to resolve without the vertical resolution
provided through these observations. For example, there has been inadequate geographical and
temporal coverage in ozone profiles for deducing ozone trends [Logan, 1994, WMO/SPARC,
1998a] in the tropics. Soundings are required to determine the vertical structure of the zonal
wave-one pattern in equatorial ozone, detected by Fishman and Larsen [1987] and Shiotani
[1992] with satellite data. The wave-one feature refers to more column ozone over the Atlantic
and adjacent continents (with a maximum near 0° longitude) than over the Pacific with minimum
ozone. Ozone profiles are also needed to evaluate satellite tropospheric ozone estimates (e.g.
Fishman and Balok, 1999; Thompson and Hudson, 1999; Ziemke et al., 1998; 2002) and to
suggest improved satellite retrievals.

To respond to these and other requirements, the SHADOZ project (Southern Hemisphere
Additional Ozonesondes; Thompson et al., 2003a,b) was initiated to augment launches at
selected tropical sites and to provide an archive of ozonesonde and radiosonde data at:
<http://croc.gsfc.nasa.gov/shadoz>. Analysis of ~1100 ozone profiles from the 1998-2000
SHADOZ record addressed some of the issues raised above. A longitudinal cross-section of
ozone showed that the wave-one is predominantly in the troposphere and occurs throughout the
year [Thompson et al., 2003b]. The vertical structure of the stratospheric ozone response to the
Quasi-Biennial Oscillation was detailed using balloon data within two degrees of the equator
[Logan et al., 2003]. In addition, a SHADOZ campaign of opportunity, the Aerosols99 cruise on
the RV Ronald H. Brown, uncovered an “Atlantic ozone paradox” [Thompson et al., 2000],
referring to a higher tropospheric ozone column over the southern hemisphere than over the
northern hemisphere during the northern tropical biomass fire season. The paradox, also
detected in satellite observations, appears to be a combination of cross-hemispheric transport,
photochemical formation of ozone resulting from lightning-derived and pyrogenic precursors
and long-range transport of southern Asian pollution interacting with convection [Edwards et al.,
2003; Jenkins et al., 2003; Chatfield et al., 2004].

1.2 Ozonesonde Measurement and Impact on SHADOZ.

Besides the above insights into tropical ozone, SHADOZ soundings shed light on
ozonesonde technique by providing statistics from an exceptionally large dataset. All SHADOZ
stations use ECC sondes (Section 2), but variations in procedures and instrument type (there are
two ECC sonde manufacturers) affect the ozone measurement [Komhyr et al., 1995; Johnson et
al., 2002; Smit and Stréter, 2004a,b]. Analysis of 1998-2000 SHADOZ soundings [Thompson et
al , 2003a] showed the following:

The precision of the total ozone column by a single instrument is 5%, a value that may be

better than previous evaluations [WMO, 1998a,b] because SHADOZ data are taken in a

fairly uniform meteorological regime.

. Comparison with ground-based instruments at five SHADOZ stations showed agreement
between integrated total ozone from the sondes ranging from 2-7% with the best
agreement at Irene (South Africa) and Nairobi.

. Comparison with total ozone from the TOMS satellite (version 7 processing) indicates a
fair degree of variability (2-11%) among stations, with the satellite measurement higher,
on average, than the sonde total ozone.

. There is no statistically significant difference among the total stratospheric ozone column
determined from SHADOZ data between 0-22° S, except for Nairobi, which is ~10 DU
higher than the other stations. The Nairobi bias is greatest at the ozone maximum and
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above. Ozone column amounts in the lower stratosphere (15-20 km) are the same at all

SHADOZ sites (Figure 12, Thompson et al., 2003a).

. Instrument manufacturer bias, deduced from four SHADOZ stations where a mixture of
instrument type had been employed, was uncertain. Two stations showed no variation.
In two others, the ENSCI instrument registered several percent more ozone than the
Science Pump (SPC) instrument. ,

Because the World Meteorological Organization (WMO) uses SHADOZ as a model for
developing procedures for new stations in the Global Atmospheric Watch (GAW) program, it is
important to understand possible instrument influences on the ozone profiles at individual
SHADOZ stations. Chamber test experiments (JOSIE series = Jiilich Ozonesonde
Intercomparison Experiment) were conducted under WMO sponsorship in 1996, 1998 and 2000.
In JOSIE-2000, techniques used in the SHADOZ network were intercompared through a
standard ozone reference instrument. In this paper:

. Total ozone column amounts from the SHADOZ sondes are compared to version 8 (v 8)
TOMS, a new processing of the satellite 0zone measurement that uses SHADOZ ozone
profiles. Offsets of sonde total ozone with TOMS v 8 and with colocated total ozone
instruments from six SHADOZ stations are compared with the corresponding sonde and

TOMS version 7 (v 7) offsets.

. Variations in total stratospheric column ozone and upper and lower stratospheric ozone
columns are compared among stations to see where biases might occur.

. A SHADOZ climatological “tropical ozone profile” is used to examine variations in

ozone profiles at individual sites. The latter results are compared to JOSIE chamber

profiles to help interpret ozonesonde performance in SHADOZ operations.
2. Observations and Methods.

2.1 SHADOZ Data.

The SHADOZ ozonesonde measurements are made with electrochemical concentration
cell (ECC) ozonesondes, in which air pumped through a cell containing a potassium iodide (KI).
Sampled ozone is oxidized producing an electrical proportional to the amount of ozone in the
atmosphere [Komhyr, 1967; 1986]. The signals are transmitted to a ground receiver and the
ozone partial pressure is recorded through comparison with the pressure readings of an
accompanying radiosonde. Designed to measure ozone concentrations from the surface to above
the ozone concentration maximum, the ozonesonde-radiosonde package is flown with a balloon
that usually bursts at 4-8 hPa.

SHADOZ was initiated (January 1998) with nine southern hemisphere stations and
presently numbers twelve sites. Irene soundings began in late 1998 and Paramaribo, the first
northern hemisphere station, started in late 1999. Launches are nominally weekly, with
occasional additions during field campaigns. Experimental details are at:
<http://croc.gsfc.nasa gov/shadoz> and in the Appendix of Thompson et al. [2003a]. A summary
of station technique, latitude and longitude appears in Table 1.

For the present analysis, sounding data from the SHADOZ archive for 1998-2002 are
used except in comparisons with TOMS where 1998-2001 data are employed. After 2001 the
Earth-Probe (EP)/TOMS instrument diverged too much from the Dobson network to be reliable
for our purposes [R. McPeters, personal communication, 2004].

The sonde instrument is not ideal for calculating total ozone because typically 15-20% of
the ozone column is above the balloon burst, the pressure measurement of the radiosonde can
become become noisy and the sampling pump rate changes. Note the following about our
calculations of total ozone from SHADOZ sondes. First, no normalization is made to total ozone
from another instrument, such as a satellite or a co-located ground-based total ozone sensor.




Second, only data from balloons that reached at 1east 10 hPa are used in computing integrated
ozone. During the1998-2000 period 75% of SHADOZ launches reached 7 hPa (analyzed in
Thompson et al., 2003a). For the present analysis we choose a larger set of profiles with the 10
hPa criterion. To integrate to 1 hPa, an “evaluated ozone residual” from the SBUV satellite
climatology of McPeters et al. [1997] gives an extrapolation from 10 hPa or balloon burst,
whichever is higher. Extrapolation by assuming a constant mixing ratio (CMR) for ozone above
balloon burst is useful for some diagnostic purposes but gives an erroneous total ozone. The
third feature of SHADOZ records is that a TOMS overpass value is taken from the orbit that
passes most closely to the station at roughly local noon. Most stations launch ozonesondes
between 0700 and 1000 local time, so the satellite and sonde measurements are well-matched.
2.2 The Ozonesonde Measurement. JOSIE-2000.

Differences in data processing, as well as in sonde manufactirer and instrument
preparation, can contribute to systematic variations among ozone measurements. Johnson et al.
[2002], Thompson et al. [2003a] and Smit and Striter [2004a,b] describe factors that may affect
the ozonesonde measurement at SHADOZ sites. These include (a) the background current; (b)
the concentration of potassium iodide (KI) in the cell anode and cathode; (c) strength of any
buffer used; (d) the factor used to correct for the decline in pump efficiency as the sonde
ascends. JOSIE experiments conducted in 1996, 1998 and 2000 suggested that these factors
could be significant [WMO, 1998b; Smit and Striiter, 2004a,b], although (a) has become a more
minor issue with improvements in cell manufacture. SHADOZ stations include a range of
solution composition (Appendix in Thompson et al., 2003a) and at least two methods of applying
the factor to correct for pump efficiency (PCF). For example, the technique at the four Pacific
stations in SHADOZ is uniform and the same instrument type (SPC) is normally used. Likewise,
uniform procedures are employed at Natal and Ascension (differing sensor concentration from
the Pacific stations), normally with the SPC instrument.

The instrument type and sensing solution were varied in the JOSIE-2000 campaign, as
shown in Tables 1 and 2. Two teams of four investigator groups participated. Each group
prepared instruments for eight chamber simulations. The tests were conducted at the
Forschungzentrum-Jilich environmental simulation facility [Smit et al., 2000; <http://www .fz-
juelich.de/icg/icg-ii/esf>, established as a World Calibration Centre for Ozonesondes (WCCOS)
to aid in quality assurance within the WMO/GAW network. Two tropical, two sub-tropical and
two mid-latitude simulations were carried out by each group along with response time tests.
Data displayed here were processed by Smit and Stréter [ 2004a,b]. Further details of JOSIE
operations appear at the website: http://www fz-juelich de/icg/icg-ii/josie>.

Table 2. JOSIE-2000 tests simulating SHADOZ conditions.

Test Date Simul. No. | Condition SHADOZ Participant

10 Sept 2000 91 Tropical NOAA/CMDL

11 Sept 2000 92 Tropical «

14 Sept 2000 94 - | Sub-tropical “

15 Sept 2000 95 Sub-tropical «“

20 Sept 2000 98 Tropical NASA/WFF, Meteoswiss,
Univ. Réunion

21 Sept 2000 99 Tropical | «




| 24 Sept 2000 v - |100 Sub-tropical «

26 Sept 2000 102 Sub-tropical «
3. Total Ozone: Comparison to Independent Measurements, Station Variability

Accuracy of the sonde total ozone measurement from 1998-2000 data was evaluated
through comparison with total ozone measured by co-located ground-based instruments (Dobson
and Brewer) at five SHADOZ sites (Figures 6 and 9 in Thompson et al, [2003a]). At each
station, total ozone is also compared to the EPA/TOMS overpass total ozone column.

3.1 Total Ozone Comparisons - TOMS version 8 '

Figure 1 shows daily TOMS overpass data (v 8 processing, 2004 release) for 1998
through 2001 for five stations, together with total ozone integrated from the sonde (as described
in Section 2) and ground-based instrument (a and e symbols, respectively). The ground-based
Dobson spectrophotometers are regularly calibrated (four sites). At Paramaribo the ozone
column is based on a Brewer instrument [Peters et al., 2004]. In the lower panel, offsets among
sonde, TOMS, and the ground-based instrument are shown. Total ozone comparisons similar to
those in Figure 1 were depicted in Thompson et al. [2003a] using TOMS v 7 ozone.

The ozone column measurement from the sondes in Figure 1a is >5% lower in 1998-1999
compared to 2000 onward. From 1997-1999 a change in the solution composition recommended
by the ENSCI manufacturer (0.5% K1 compared to 1%) was employed at Natal even when the
SPC sonde was flown. This is consistent with results of the JOSIE tests. During JOSIE-2000 it
was shown that when the same instrument type and data processing are used, the 0.5% K1
solution gives an averaged 5% lower ozone throughout the profile than does the 1% KI solution
[Smit and Striter, 2004b]. In addition to known changes in the sonde technique at Natal, there is
evidence in both the colocated Dobson and Brewer instruments (the latter not shown) that TOMS
ozone declined and became more variable in 2001 compared to the prior four years. Similar
behavior among Brewer, Dobson and TOMS ozone was noted at Cachoeira Paulista, Brazil (23S,
38W; V. W_J. H. Kirchhoff and N. Paes Leme, unpublished manuscript, 2004). -

The African stations are those with the closest agreement between TOMS and the sonde
total ozone column (Figures 1b,c). This holds throughout the SHADOQZ record, although the
Dobson at Irene seems noisier in 1998 than later on. Both the Nairobi and Irene Dobson
instruments were calibrated with the traveling world standard Dobson in Pretoria in April 2000.
Data from the Nairobi Dobson are not available after that time. Judging from the sonde and
Dobson, the TOMS instrument appears stable over Irene from 1998-2001. In Thompson et al.
[2003a] it was noted that Irene and Nairobi are the two SHADOZ stations with elevation > 1 km.
This possibly implied better agreement at sites with less tropospheric air mass because TOMS is
not very sensitive below 500 hPa [Hudson et al., 1995]. However, Thompson et al. [2003a] also
found (cf Figure 3 below) that much of the disagreement between TOMS total ozone and the
sonde integral originates in the stratospheric part of the ozone profile. With Figure 2 showing
similar TOMS-sonde offsets at Malindi (sea-level) and Nairobi (1.3 km altitude, 400 km from
Malindi), there is further evidence that tropospheric discrepancies do not dominate.

At Samoa (Figure 1d) TOMS total ozone appears to be declining relative to the sonde
measurement, although the early 1998 sonde data are too noisy to be definitive in this respect.
There is less drift in TOMS compared to the Dobson. The tendency for the TOMS ozone
column to exceed that of the Dobson by overestimating tropospheric ozone in the satellite
algorithm (Figure 8c in Thompson et al., 2003b), appears unchanged in the transition from v 7 to

v 8.

At Paramaribo (Figure 1) sonde total ozone is consistently greater than the TOMS v 8




measurement and the Brewer is frequently less than the satellite ozone. In both cases, though

less than three years of data are given, a TOMS downward drift is suggested in the second half
of 2001. Sonde total ozone is nearly 10% higher than TOMS, on average, at that time.
Paramaribo is north of the ITCZ most of the year, quite distinct from other SHADOZ stations
and the ozone profile (and integrated column) may indeed diverge from them. Accordingly, in
most subsequent comparisons, we do not compare Paramaribo data with the southern hemisphere
data.

In Figure 2, where the TOMS-sonde total ozone differences are displayed for both v 7
and v 8 TOMS, Paramaribo shows a negative deviation. Figure 2 also shows a tendency for the
Pacific SHADOZ stations and Watukosek to be biased lower relative to TOMS than the Atlantic
and African stations. One reason for this is that the TOMS algorithm (both versions 7 and 8)
assumes a greater tropospheric ozone column depth (29.8 DU; Table 4 in Thompson et al ,
2003b) than actually measured at the Pacific stations (mean tropospheric column depth, ~19
DU). There is only a 1-2 percentage point change to the TOMS-normalized data at the
SHADOZ stations (Table 3) using v 8 compared to v 7. However, agreement between the
southern hemisphere Dobson stations and TOMS v 8, spanned within the shading in Figure 2,
improved over v 7 (compare offsets shown in [Bodeker et al., 2001]).

3.2  Stratospheric Ozone Comparisons from SHADOZ Sondes

We also examined the integrated stratospheric ozone column to see whether some of the
SHADOZ station variability is due to stratospheric ozone variability among the sites (refer to
Figures 10-12 in Thompson et al. [2003a]). These analyses are performed with the 1998-2002
sondes in three ways, as illustrated in Figures 3a-c. The total integrated stratospheric ozone
column in Figure 3a includes the measured ozone column to 10 hPa and the SBUV
extrapolation. The latter quantity is an average by month and latitude band, i.e., 0-10N, 0-10S,
10-20S [McPeters et al., 1997]. The range of SBUV extrapolation values used for 10-1 hPais
36-48 DU. Figure 3a, which presents the total integrated stratospheric ozone column (+ 1-0),
shows all the stations overlapping except for Ascension Island (lowest at 167 DU) and :
Paramaribo (highest at 196 DU). All other SHADOZ stations are within the range 177-192 DU.
In Thompson et al. [2003a] it was concluded that the SHADOZ record does not show a
statistically significant stratospheric wave-one pattern. Additional data in the present analysis
(~40% more profiles than in Thompson et al. [2003a]) lead to the same conclusion.

Two diagnostics are used to look more closely at stratospheric variability: the 15-20 km
integral (~110-60 hPa) and the CMR extrapolation. Figure 3b, depicting the lower stratospheric
integrated ozone column, shows almost no variation among the SHADOZ stations (compare
Figure 11 in Thompson et al. [2003a], where 1998-2000 data were used). An exception is Irene,
where roughly half the observations are made at mid-latitude conditions. Not counting Irene, the
range of mean 15-20 km ozone column is ~4 DU. The 15-20 km ozone column uniformity is
taken as further evidence for the lack of a stratospheric wave because zonal variation is expected
in the lower stratosphere [Shiotani and Hasebe, 1994; Newchurch et al., 2001].

The CMR is used to diagnose the relative behavior of the upper stratosphere which is not
expected to vary among the southern hemisphere SHADOZ sites. In Figure 3c, raw CMR values
are not displayed but rather their deviation from the SBUV add-on for each station (Table 2). '
Variations in the CMR-SBUYV parameter may reflect the effect of the sensing solution, the
instrument used or data processing (primarily the PCF employed by each station Co-.
Investigator). Here, in contrast to the lower stratosphere bias (Figure 3b), the range across the
SHADOZ stations exceeds 10 DU. The Atlantic stations (Paramaribo-Natal-Ascension) are
relatively high whereas for total stratospheric ozone, Natal and Ascension are relatively low
(Figure 3a). Irene, Fiji and San Cristobal are the lowest in normalized CMR. Can the precision
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of the stratospheric quantities be estimated using the CMR normalized statistics? The Natal-
Ascension pair and Fiji-Samoa pair are only 4 DU apart. Nairobi and Malindi, stations ~400 km
apart, are within 2 DU of one another in all three stratospheric analyses shown in Figure 3.

3.3 Implications of JOSIE-2000 for SHADOZ Total and Stratospheric Ozone

How do we interpret some of the apparent systematic differences among SHADOZ
stations? The possibility of instrument effects is considered by referring to selected JOSE-2000
results. First, the deviation between integrated ozone from the sonde in the chamber relative to
the ozone photometric (OPM) standard is compared to normalized total ozone from SHADOZ
sites. In other words, TOMS, the ground-based instruments and the OPM are treated as
standards through which the sonde ozone total is intercompared. Figure 4 depicts the following:
. Ozone data from the test chamber integrated from surface conditions to 10 hPa using the

appropriate instrument type for a given SHADOZ station differenced with the integrated

ozone from the JOSIE-2000 OPM. The chamber ozone column was computed with the
participant’s own pump correction factor to capture possible processing biases as well as
effects of instrument type and sensing solution.

. Ozone integrated from the SHADOZ station sondes relative to TOMS total ozone from

satellite overpasses (as in Figure 2).

. Total column ozone from ground-based instruments at five SHADOZ stations (four

Dobsons, one Brewer) differenced to the TOMS overpass total ozone.

Figure 4 shows that differences between sonde total ozone from the three Pacific stations
and Watukosek and v 8 TOMS (with the sonde reading low relative to the satellite) are mostly
consistent with the JOSIE-2000 results. The field instruments (SPC) read ~7% lower than
TOMS at Samoa and Fiji. That is nearly identical to the JOSIE deviation from the OPM and
within 2% of the TOMS-sonde offsets at Watukosek, where the same technique (NOAA/CMDL
method) is used. The TOMS-sonde agreement at San Cristobal is similar to Samoa and
Watukosek but the TOMS-sonde discrepancy is slightly worse than the JOSIE sonde-OPM
disagreement. Dobson-TOMS (Samoa) and Brewer-TOMS (Watukosek) offsets are smaller (2%
absolute) than the sonde-TOMS offsets for these stations and for San Cristobal and Fiji.

Natal shows close agreement between the sonde-TOMS discrepancy (Figure 4) and the
JOSIE-2000 chamber tests, where the sonde ozone total was ~2.5% lower than the standard. The
Dobson, however, was ~2.5% higher than TOMS ozone at Natal. Also, in Figure 4, JOSIE-2000
tests show the instrument type (ENSCI) reading greater in total ozone than the OPM standard for
the Réunion and Meteoswiss (Nairobi) participants. The sondes recorded 6-7% greater ozone
than the reference. For the corresponding SHADOZ measurements at Nairobi, total ozone
normalized to TOMS reads higher than at all other stations but one (Malinidi). However, the
TOMS-sonde offset at Nairobi is less than the bias of the comresponding JOSIE instruments. The
TOMS-sonde offset based on Réunion measurements differs nearly 10% from the chamber tests.
4, SHADOZ Ozone Profile Analysis

Although there are relatively small differences in stratospheric ozone column among
SHADOZ stations, it is important to evaluate variability arising from the ozone measurement in
various parts of the profile. This is done in two steps. First, mean SHADOZ ozone profiles from
each station are compared to an overall mean SHADOZ profile. Second, biases in the
- stratospheric ozone segments at SHADOZ stations are compared to corresponding behavior of
the station technique as tested in JOSIE-2000.

4.1  Characteristics of Mean SHADOZ Profiles

Figure 5 shows the mean profile from each southern hemisphere SHADOZ station. The
CMR isolines are drawn to show tendencies for upper stratospheric variability among the
SHADOZ stations. What is observed? For the three Pacific stations and Watukosek (Figure 5a).
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ozone profiles are nearly identical in the lower stratosphere but there is divergence at the
stratospheric maximum. For Watukosek the maximum occurs at ~15 hPa and the corresponding
partial pressure is 14 mPa. For Fiji the maximum partial pressure is ~13mPa. Extrapolations
above 7 hPa (the minimum pressure plotted) fall between the 8 and 10 ppmv isolines. The
tropospheric profiles of the three Pacific stations are similar in integrated column amount and
shape. At the surface, ozone is < 2 mPa (14.5 ppbv), declining to the top of the mixed layer.
Ozone then increases to ~600 hPa where a second decline begins that continues to the
tropopause. The lower tropospheric layer of maximum ozone is due to imported pollution. Only
at Watukosek, among SHADOZ sites, does pollution-level ozone occur at the surface.

Figure 5b shows that the two Atlantic and two Kenyan stations are similar in the
stratosphere (~ 15 mPa at maximum) except for Ascension where the maximum partial pressure
is < 14hPa. The upper stratosphere ozone (signified by CMR isoline at 12 ppmv) for Natal,
Nairobi and Malindi is also greater than for Ascension. In the troposphere, Natal and Ascension
have peak ozone partial pressure at 700 hPa, a consequence of long-range transport of pollution.
Back-trajectories initialized at 700 hPa from Natal and Ascension on days of ozonesonde launch
(images available at the SHADOZ website) show African origins for the highest ozone episodes.
The two sub-tropical SHADOZ stations (Figure 5c) have peak ozone partial pressure closer to 30
hPa than to 20 hPa (compare the tropical maximum in Figures 5a,b). Sub-tropical profiles are
signified by more ozone throughout the lower stratosphere and upper troposphere. In the
uppermost stratosphere, Irene and Réunion differ, with the latter always higher. This causes a 5
DU difference in the normalized CMR between the two stations (Figure 3c).

For purposes of examining relative features of individual station profiles, it is useful to
define “mean tropical” and “mean sub-tropical” ozone profiles from SHADOZ data. These can
be viewed as analogous to the JOSIE-2000 OPM “standard” tropical and sub-tropical profiles. A
SHADOZ “mean tropical” ozone profile, with 1-o standard deviation (Figure 6a), is based on the
eight stations illustrated in Figures 5a and Sb plus 1998-1999 statistics from Tahiti (see Table 3
in Thompson et al. [2003a]). For Watukosek, only data from after July 1999, when soundings
with ECC instruments were initiated, appear in the average. Likewise, the Réunion (21°S) and
Irene (26°S) ozone data are used to define a SHADOZ “mean sub-tropical” ozone profile (Figure
6b.) The integrated ozone column amounts show a tropical-sub-tropical difference of ~15 DU:

Integrated ozone, surface--10 hPa: 189.4 DU, tropical  206.1 DU, sub-tropical
Integrated ozone, surface--7 hPa: 212.5 DU, tropical  225.4 DU, sub-tropical
4.2  SHADOZ Qzone Profile Climatologies Relative to Means

In Figure 7a-h individual station ozone profiles, normalized to the SHADOZ tropical
mean, are depicted. Positive deviations signify a higher bias at the same pressure at a SHADOZ
station relative to the climatological ozone value. Tropospheric absolute deviations sometimes
exceed 40%. In the stratosphere (taken as above 100 hPa for convenience), the deviations rarely
exceed 10%. On average, above 70 hPa, Samoa (Figure 7a) is closest to the climatological mean
with absolute deviation < 5% up to 10 hPa. Above 80 hPa San Cristobal (Figure 7b) is also close
to the climatology and the shape is quite uniform throughout the stratosphere. Fiji is distinctive
among the stations illustrated (Figure 7c) in having the largest positive deviation in the lower
stratosphere between 40 and 95 hPa. Ascension and Natal (Figures 7d,e) parallel one another in
the stratosphere. There is a monotonic change in the deviation, starting from station sondes
biased low relative to climatology. At 10 hPa, both are within 5% of the mean ozone value and
5-10% greater than Samoa, San Cristobal and Fiji at 10 hPa. Nairobi deviations (Figure 7f)
resemble Ascension and Natal throughout most of the stratosphere. An exception is in the 80-60
hPa range where the Nairobi sondes are greater than climatology by ~5% and Ascension and
Natal (Figures 7 d,e) are low by 5-10%. Malindi (Figure 7g) has positive deviations throughout

7




the stratosphere, similar to Nairobi (Figure 7f). Watukosek (Figure 7h) has the greatest deviation

£ P 1 14h1 o/
from the mean at the 100 hPa level but above 60 hPa is always within 5% of the mean.

The results shown in Figure 7 are explored further to see if the tendencies recorded in
ozone above 100 hPa are consistent with the total ozone patterns and with independent
evaluation of the SHADOZ technique. First we ask: (1) How do the profile deviations from a
SHADOZ tropical climatology (depicted in Figure 7) compare to variability in total ozone from
among the stations? The information summarized in Figure 7 is compared to Figure 3 and Table
3. Figure 3 showed that column-integrated stratospheric ozone to 10 hPa at Samoa, San
Cristobal, Watukosek and Fiji fall within a 7 DU (177-184 DU) range of one another. This is
consistent with Samoa and San Cristobal having profiles close to the tropical mean (Figures
7a,b). The deviations within the Fiji profile (Figure 7c), positive above 30 hPa and negative
below, apparently cancel out in the stratospheric integral. Table 3 (also Figure 3a) shows the Fiji
stratospheric column (179.7 DU) close to the all-southern tropical station mean (181.8 DU).

Figure 3 and Table 3 show Ascension ~10 DU less in stratospheric column than the other
stations whereas Nairobi and Malindi are ~10 DU greater. Figure 7 indicates how these
variations might come about. The Ascension stratospheric profile (Figure 7d) is 5% lower than
climatology, on average, throughout the stratosphere. However, at 80-100 hPa, Ascension is
greater than climatology so the 15-20 km column integral (Figure 3b) does not deviate
significantly from the other stations. Natal (Figure 7e), like Fiji, has deviations both positive and
negative so that its stratospheric integral falls near the mean (Figure 3a). Nairobi and Malindi
(Figures 7f,g) are roughly 5% higher than the climatological profile throughout the stratosphere.
4.3  SHADOZ Profile Biases and JOSIE-2000 Results

How do the deviations at individual SHADOZ stations, relative to the tropical
climatology, compare to profile deviations for the given technique as recorded in the JOSIE-
2000 tests with a reference ozone standard? Figure 8 illustrates the stratospheric offsets from the
SHADOZ climatology (as in Figure 7) along with deviations between the corresponding
chamber instrument and the JOSIE OPM. The latter deviations plotted are based on the
participants specified corrections (PSC). Figure 7 in Johnson et al. [2002] shows that the PSC
adds 5-10% to the measured value above 100 hPa for all but one method used in SHADOZ
(Table 1; see also Table A-1 in Thompson et al. [2003a]). The exception is a higher PSC (up to
20% added) used where the NOAA/CMDL technique is employed (four Pacific stations and
Watukosek after July 1999).

Comparisons are given for three instrument types: NOAA/CMDL method (Samoa, Fiji,
San Crist6bal, Figures 8 a,b); NASA/WFF method with Natal and Ascension (Figures 8 c,d); the
Meteoswiss method with Nairobi (Figures 8e,f). Figures 8a and 8b represent two tropical
JOSIE-2000 simulations and display, respectively, the deviations of the sonde from the OPM
standard with the NOAA/CMDL sensing solution (2% KI, no buffer) in cells of SPC and ENSCI
manufacture. The NOAA/CMDL method is low (~50%) compared to the OPM at 100 hPa. As
the pressure falls below 60 hPa, agreement improves to within 10% of the standard, averaging a
little below the OPM in Figure 8a (the SPC instrument) and a little above the OPM (ENSCI) in
Figure 8b. For the NASA/WFF (Figure 8c,d) and Meteoswiss (Figure 8¢,f) methods, JOSIE-
2000 also shows an underestimate of ozone relative to the OPM in the 100-60 hPa range, though
of less magnitude (10-20% deviation) than the NOAA/CMDL method. Deviations of
NASA/WFF JOSIE and SHADOZ Natal sondes minimize at 40 hPa (Figure 8c,d).

In Figure 8 the low-ozone bias in all cases in the 100-60 hPa region in the JOSIE-2000
tests reflects the very low absolute ozone amount at 100 hPa in the simulated profile. The sonde
responses, determined in pre-experiment tests (or pre-launch, in the field), are typically 22-35
seconds, whereas the photometer senses an ozone change within a second. In the chamber
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simulation, the ozone partial pressure was nearly zero from 180-100 hPa. Above 100 hPa, as in
the iropical atmosphere, ozone increases sharply but the sondes never respond as quickly as the

photometer. As ozone continues to increase with decreasing pressure, the percentage lag is less;
the agreement with the OPM improves.

Differences among sonde performance in the JOSIE-2000 stratospheric simulations also
reflect variations in the sonde sensing solution and ECC instrument type. The large contrast in
sonde response in the 100-60 hPa range when the NOAA/CMDL method (Figure 8a,b) is
compared to the other two methods (Figures 8c-f) stems from a difference in buffering of the KI
solution. After a strong ozone signal has been measured, a buffered solution responds to lower
ozone sluggishly, a “memory” effect. The unbuffered NOAA/CMDL solution (Figure 8 a,b)
appears to have a greater lag in the 100-60 hPa region relative to the NASA/WFF and
Meteoswiss instruments (with buffered solutions) because there is no memory from previous
measurements. Thus, the apparent better ozone response of the NASA/WFF and Meteoswiss
instruments in the lower stratosphere, either simulated or when Fiji offsets (Figure 8a,b) are
compared to Natal or Nairobi (Figures 8c-f), for example, is partly an artifact of the solution.

The impact of buffering may be significant in the upper stratospheric portion of the ozone
profile (40-10 hPa in Figure 8) where the ozone maximum occurs. However, this influence is
more difficult to gauge because PSCs are included in both the JOSIE-2000 and SHADOZ data.
In the case of the NOAA/CMDL method (Figure 8a,b) the JOSIE-2000 tests show a slight
positive bias above 20 hPa but the SHADOZ data are all relatively low compared to the tropical
climatology. Fiji, Samoa, San Cristobal ozone deviations (Figure 8a,b) average ~15% lower
than ozone at Nairobi above 20 hPa (Figure 8e,f) and 5-10% lower than Natal (Figure c,d).

The Meteoswiss JOSIE-2000 results and SHADOZ Nairobi sonde deviations (Figure
8e,f) generally follow one another. The Nairobi sondes are higher than the SHADOZ
climatology throughout the stratosphere. The JOSIE-2000 tests showed a mostly positive bias
for the Meteoswiss method above 65 hPa. The Meteoswiss and NASA/WFF results appear to
illustrate a difference in instrument type. The JOSIE readings shown in Figures 8c-f were taken
during the same chamber simulations (Nos. 98 and 99) with identically prepared sensing
solution. Relative to the OPM, the raw signal recorded with the Meteoswiss ENSCI instruments
measured 5-10% more ozone throughout the simulated stratosphere than NASA/WFF with SPC.
This is equivalent to an integrated ozone difference of ~20 DU, similar to the high-bias depicted
for Nairobi in Figure 3a. These contrasts resemble those of the Nairobi sondes relative to the
SHADOZ tropical climatology and to the Natal and Ascension offsets above ~85 hPa (compare
Figures 8c and 8e). The tendency for the ENSCI instrument to record 5-7% more total ozone
from 100-10 hPa than the SPC when the same solution composition and processing are
employed, was a major finding of JOSIE-1998 and JOSIE-2000 [Smit and Striter, 2004a,b]. The
same behavior is observed when ENSCI and SPC instruments prepared identically are launched
on the same balloon [Johnson et al., 2002; F. J. Schmidlin, personal communication, 2003]. The
high ENSCI bias may explain why Watukosek is higher in the upper stratosphere than similarly
prepared sondes at the three Pacific stations where the SPC instrument is used (Figure 5a)

S. Summary

In the first part of this paper total ozone columns from SHADOZ stations are compared
to the new v 8 TOMS total ozone product for the period 1998-2001. At five SHADOZ sites,
comparisons are also made with ground-based instruments that measure total ozone. The results
can be summarized as follows:

1. Comparison of total ozone from the SHADOZ sondes and v 8 TOMS shows that, on
average, the satellite records greater ozone column amount than the sondes or co-located

Dobson instruments. An exception is at Paramaribo, where the sonde total ozone is more
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than 5% greater than the satellite overpass amount. These results are similar to sonde

compansons with v 7 TOMS [Thompson et al., 2003a] but there is a 1-2% improvement

in agreement between the sonde ozone and v 8 TOMS due to re-calibration of TOMS.

2. Station-to-station total column differences between sonde and TOMS v 8 ozone,
averaged from 1998-2001, are similar to those for 1998-2000 based on comparisons with
TOMS version 7 [Thompson et al., 2003a]. Also similar to v 7, the worst agreement
between TOMS v8 and the southern hemisphere sondes occurs at stations with the lowest
tropospheric column ozone.

3. Evaluation of column ozone segments within the stratosphere, based on 1998-2002
SHADOZ data, shows the same stratospheric uniformity (no longitudinal wave-one) and
upper stratospheric biases reported by Thompson et al. [2003a].

In the second part of our analysis, variability among SHADOQOZ stations, normalized to a
climatological profile, is evaluated through comparison with instrument performance in JOSIE-
2000 chamber simulations of balloon ascents in a tropical regime. The major findings include:
4. Nairobi sondes from SHADOZ show a high-ozone bias throughout the stratosphere

relative to the other southern hexmsphere station data. As a result, the mean stratosphenc
ozone column amount over Nairobi is ~15 DU higher.

5. The JOSIE-2000 chamber tests suggest that the high-ozone bias at Na1rob1 can be
explained by a combination of the instrument type and sensing solution employed by the
Meteoswiss-Kenya Meteorological Department. Above the 20-km mark in the JOSIE
chamber, the Meteoswiss (ENSCI) instrument read 5-10% higher than the NASA/WFF
instrument (SPC) that used the same solution type. Similar contrasts occur in normalized
Nairobi and Ascension/Natal ozone profiles.

6. In JOSIE-2000 too low ozone was measured in lower stratospheric segments (100-60
hPa) where sonde responses lag the standard photometer by 20-30 seconds. This effect
appears in segments of four SHADOQOZ stations (Ascension, Natal, Samoa, San Crist6bal).

7. The impact of sensing solution composition on SHADOZ station variability is harder to
assess because PSCs are included in the archived data. JOSIE-2000 results show
memory effects associated with buffered solutions (used at all sites except those with the
NOAA/CMDL method), especially in the lowest ozone segments (~100 hPa). The
memory effects may also explain positive offsets above 20 hPa at Nairobi and Natal. At
Fiji, Samoa and San Cristobal, where unbuffered solutions are used, upper stratospheric
ozone profiles are lower than the SHADOZ-defined climatology.

Bearing in mind that SHADOZ statistics represent hundreds of balloon flights at some stations,

compared to a small number of simulations in the JOSIE-2000 test chamber (two prototype

profiles/technique), it is gratifying to note that sonde deviations in JOSIE are roughly reflected in
the sonde biases within the SHADOZ dataset. Ozonesonde instrument issues will be further
evaluated with results from an April 2004 balloon intercomparison called BESOS (Balloon

Experiment for Standards of Ozonesondes; <http://croc.gsfc nasa gov/besos™>). As in the JOSIE

experiments, BESOS features a standard ozone photometer through which a set of sondes flown

on the same gondola are intercompared (cf Hilsenrath et al., 1986).
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Table 1. SHADOZ sites, instrument technique, parameters during JOSIE-2000 tests.

SHADOZ Sites Lat./Long. (deg) Station | Station | JOSIE | JOSIE
Meth. | Instru. | Meth.* | Instru.
Suva, Fiji -18.13 | 17840 | 2%KI | SPC 2%KI | SPC
Pago Pago, Am. Samoa -1423 | -170.56 | 2%KI | SPC 2%KI | SPC
Papeete, Tahiti -18.00 | -149.00 | 2%KI | SPC 2%KI1 | SPC
San Crist6bal, Galapagos 092 | -89.60 [2%KI |SPC 2%KI | SPC
Paramaribo, Surinam 5.81 552 1 1%KI SPC -— -—
Natal, Brazil 5421 -3538|1%KI |SPC** |1%KI |SPC
| ENSCI
Ascension Island 798| -1442|1%KI |SPC** |1%KI |SPC
ENSCI
| Irene, South Africa 2525.1] 2822|1%KI |SPC — —
Nairobi, Kenya -127) 3680 |1%Kl |ENsc1 |1%KI |ENSCI
Malindi, Kenya 299| 40.19]|1%KI |SPC — —
La Réunion 2106 | 5548).5,1% |SPC** |5,2% |ENSCI
KI ENSCI | KI
Watukosek, Indonesia 757 112,65 | 1%? ENSCI | — -
Kaashidhoo, Maldivest 5.0 735 |2%KI | ENSCI | — -
Aerosols99 Cruiset _ ~]2%K1I |ENSCI |— -

* Responsible Co-1 JOSIE participant: NOAA/CMDL for Fiji, Samoa, San Cristobal, Tahiti; NASA
Wallops Flight Facility (WFF) for Natal, Ascension; Méteosuisse for Nairobi; Univ. Réunion for La
Réunion. FZ-Juelich JOSIE participant test method used at Irene, Paramaribo.

** Mixture of solution strengths, instruments used; see details in Thompson et al. [2003a]

+ Campaign data in SHADOZ archive. 23 sondes from Aerosols99 cruise, January-February 1999
[Thompson et al., 2000]; 54 sondes from Kaashidhoo taken during late January-March 1999 [Figure 11b
in Thompson et al., 2003b}
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Figure Captions

Fig1 Upper Panel: A comparison of integrated total ozone from sondes, TOMS satellite (Level 2,
version 8) overpasses and Dobson or Brewer instruments at the following SHADOZ stations:
(a) Natal; (b) Nairobi; (c) Irene; (d) Samoa; (¢) Paramaribo. Lower Panel: % deviation
relative to the sonde or the ground-based instrument (TOMS version 8). Sonde-ground-based
instrument differences are indicated by a*. Integrated ozone from sondes based on data to
10 hPa with extrapolation above 10 hPa from McPeters et al. [1997] climatology. In
Thompson et al. [2003a], comparisons are with TOMS v 7 total ozone and sondes reaching 7
hPa before balloon burst. Overall features using v 7 resemble those shown here with v 8.

Fig2 Summary of averaged differences between total ozone from SHADOZ sondes and from
TOMS (v 7; cf Figure 9, Thompson et al., 2003a) and sondes and TOMS v 8. Datato 10 hPa
(Table 3) with SBUV extrapolation are used for sonde total ozone. Shaded region
corresponds to “best total ozone™ based on Dobsons and most recent TOMS calibration.

Fig3 (a) Zonal view of stratospheric column ozone determined from integrated stratospheric
ozone of soundings plus SBUV extrapolation. Bars indicate 1-0 standard deviation. For
Irene, column may be higher because mid-latitude stratospheric conditions often prevail. The
lack of distinct zonal variation in the stratospheric column signifies the absence of a zonal
wave-one in the stratosphere. However, uncertainty about the tropopause location introduces
4-5 DU imprecision in the values shown and a wave amplitude smaller than that could not be
verified; (b) zonal view of integrated column ozone (DU) between 15 and 20 km, with 1-0
standard deviation; (c) zonal view of the difference between average CMR (constant-mixing-
ratio) extrapolations and SBUV for SHADOZ stations.

Fig4 Summary of averaged differences between total ozone from SHADOZ sondes and from
TOMS (*, v 8, as in Fig 2) with difference between co-located ground-based total ozone and
TOMS (O, v 8). Also shown for each station is the mean difference in total ozone between
the representative JOSIE-2000 sonde type and the JOSIE-2000 chamber standard (¢, standard
= OPM, ozone photometer).

Fig5 Mean ozone profiles (from 1998-2002) from soundings that reached 7.0 hPa pressure based
on 0.25 km averages. (a) Pacific, eastern Indian Ocean stations: Fyji, American Samoa, San
Cristobal, Watukosek; (b) Atlantic and Kenyan sites: Natal (Brazil), Ascension, Nairobi,
Malindi; (c) two sub-tropical stations in SHADOZ, Réunion and Irene. The standard

~ deviation (1-0) for these averages is +/-1.5 mPa at the stratospheric maximum and ~0.3 mPa
elsewhere in the stratosphere. In the middle troposphere, due to large natural variability, the
1-0 standard deviation is ~0.5 mPa at the Pacific stations and > 1 mPa at the others. Constant-
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Fig6

Fig7

mixing ratio (CMR) isolines are also illustrated. Our CMR definition uses the uppermost

measured points before 7 hPa, then adds a column amowunt up to 1 hPa. The correspondin

mean CMR above 7.0 hPa is given in Table 3.

Climatological mean profiles based on 1998-2002 SHADOQZ data with mean and 1-0 standard
deviation (shaded). (a) “tropical” based on all southern hemisphere SHADOZ stations except
Réunion and Irene; (b) “sub-tropical” based on Réunion and Irene data. Constant mixing
ratio isolines shown.

Mean SHADOZ station profiles (1998-2002) shown in Figure 5a,b normalized to the
climatological mean in Figure 6a. (a) Samoa; (b) San Cristobal; (c) Fiji; (d) Ascension; (e)
Natal; (f) Nairobi; (g) Malindi; (h) Watukosek.

Fig8 Same deviations as Figure 7 except stratospheric portion of sonde illustrated from 100-10 hPa.

Stations are clustered according to technique used. Also shown are deviations of participant
specified corrections (PSC) from OPM standard in JOSIE-2000. (a,b) NOAA/CMDL JOSIE
with deviations from SHADOZ tropical mean profile for Samoa, Fiji, San Cristobal; (c,d)
NASA/WFF JOSIE deviations with SHADQZ deviations based on Natal and Ascension data;
(e.f) Meteoswiss JOSIE deviations with Nairobi deviation from SHADOZ tropical mean.
JOSIE-2000 data are two minute running averages.
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Longtitude coverage of stratospheric column amount
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Dobson Units
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Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project
has collected more than 2000 ozone profiles from a dozen tropical and subtropical
sites using balloon-borne electrochemical concentration cell (ECC) ozonesondes.
See: <http://croc.gsfc.nasa.gov/shadoz>. It turns out that analysis of
ozonesondes data from SHADOZ [Thompson et al., 2003a] revealed that variations
in ozonesonde technique might cause station-to-station biases in the ozone
readings. In Sept 2000 we had an opportunity to participate in the JOSIE-2000
chamber tests with all the SHADOZ methods mentioned. The purpose was to
examine SHADOZ data in the light of the chamber tests. We found that certain
variations in SHADOZ ozone profiles are accounted for by differences in solution
composition, data processing and instrument (manufacturer). Instrument bias
leads to a greater ozone measurement above 25 km over Nairobi and to lower total
column ozone at three Pacific sites compared to other SHADOZ stations at 0-20°S.
in the measurements. We also in this paper compared SHADOZ total ozone column
amounts to version 8 TOMS (2004 release). Discrepancies between sonde and
satellite datasets declined 1-2 percentage points on average, compared to version 7
TOMS but were still quite at variance (up to 8%) in total ozone at some sites.
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Abstract: Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project
has collected more than 2000 ozone profiles from a dozen tropical and subtropical sites using
balloon-borne electrochemical concentration cell (ECC) ozonesondes. The data (with
accompanying pressure-temperature-humidity soundings) are archived at:
<http.//croc.gsfc nasa gov/shadoz>. Analysis of ozonesonde imprecision within the SHADOZ
dataset [Thompson et al., 2003a] revealed that variations in ozonesonde technique could lead to
station-to-station biases in the measurements. In this paper imprecisions and accuracy in the
SHADOZ dataset are examined in light of new data. When SHADOZ total ozone column
amounts are compared to version 8 TOMS (2004 release), discrepancies between sonde and
satellite datasets decline 1-2 percentage points on average, compared to version 7 TOMS.
Variability among stations is evaluated using total ozone normalized to TOMS and results of
laboratory tests on ozonesondes (JOSIE-2000, Jilich Ozonesonde Intercomparison Experiment).
Ozone deviations from a standard instrument in the JOSIE flight simulation chamber resemble
those of SHADOZ station data relative to a SHADOZ-defined climatological reference. Certain
systematic variations in SHADOZ ozone profiles are accounted for by differences in solution
composition, data processing and instrument (manufacturer). Instrument bias leads to a greater
ozone measurement above 25 km over Nairobi and to lower total column ozone at three Pacific
sites compared to other SHADOQZ stations at 0-20°S.
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1. Introduction. Insights from the first three years’ SHADOZ ozone data

1.1. Tropical Ozone Profiles: Needs and Status.

In the past 15 years there has been interest in enhancing the number of tropical ozone
soundings because important scientific issues are hard to resolve without the vertical resolution
provided through these observations. For example, there has been inadequate geographical and
temporal coverage in ozone profiles for deducing ozone trends [Logan, 1994; WMO/SPARC,
1998a] in the tropics. Soundings are required to determine the vertical structure of the zonal
wave-one pattern in equatorial ozone, detected by Fishman and Larsen [1987] and Shiotani
[1992] with satellite data. The wave-one feature refers to more column ozone over the Atlantic
and adjacent continents (with a maximum near 0° longitude) than over the Pacific with minimum
ozone. Ozone profiles are also needed to evaluate satellite tropospheric ozone estimates (e.g.
Fishman and Balok, 1999; Thompson and Hudson, 1999; Ziemke et al., 1998; 2002) and to
suggest improved satellite retrievals.

To respond to these and other requirements, the SHADOZ project (Southern Hemisphere
Additional Ozonesondes; Thompson et al., 2003a,b) was initiated to augment launches at
selected tropical sites and to provide an archive of ozonesonde and radiosonde data at:
<http://croc.gsfc.nasa.gov/shadoz>. Analysis of ~1100 ozone profiles from the 1998-2000
SHADOZ record addressed some of the issues raised above. A longitudinal cross-section of
ozone showed that the wave-one is predominantly in the troposphere and occurs throughout the
year [Thompson et al., 2003b]. The vertical structure of the stratospheric ozone response to the
Quasi-Biennial Oscillation was detailed using balloon data within two degrees of the equator
[Logan et al., 2003]. In addition, a SHADOZ campaign of opportunity, the Aerosols99 cruise on
the R’V Ronald H. Brown, uncovered an “Atlantic ozone paradox” [Thompson et al., 2000],
referring to a higher tropospheric ozone column over the southern hemisphere than over the
northern hemisphere during the northern tropical biomass fire season. The paradox, also
detected in satellite observations, appears to be a combination of cross-hemispheric transport,
photochemical formation of ozone resulting from lightning-derived and pyrogenic precursors
and long-range transport of southern Asian pollution interacting with convection [Edwards et al.,
2003; Jenkins et al., 2003; Chatfield et al., 2004].

1.2 Ozonesonde Measurement and Impact on SHADOZ.

Besides the above insights into tropical ozone, SHADOZ soundings shed light on
ozonesonde technique by providing statistics from an exceptionally large dataset. All SHADOZ
stations use ECC sondes (Section 2), but variations in procedures and instrument type (there are
two ECC sonde manufacturers) affect the ozone measurement [Komhyr et al., 1995; Johnson et
al., 2002; Smit and Striter, 2004a,b]. Analysis of 1998-2000 SHADOZ soundings [Thompson et
al 2003a] showed the following:

The precision of the total ozone column by a single instrument is 5%, a value that may be

better than previous evaluations [WMO, 1998a,b] because SHADOZ data are taken in a

fairly uniform meteorological regime.

. Comparison with ground-based instruments at five SHADOZ stations showed agreement
between integrated total ozone from the sondes ranging from 2-7% with the best
agreement at Irene (South Africa) and Nairobi.

. Comparison with total ozone from the TOMS satellite (version 7 processing) indicates a
fair degree of variability (2-11%) among stations, with the satellite measurement higher,
on average, than the sonde total ozone.

. There is no statistically significant difference among the total stratospheric ozone column
determined from SHADOZ data between 0-22°S, except for Nairobi, which is ~10 DU
higher than the other stations. The Nairobi bias is greatest at the ozone maximum and

1



above. Ozone column amounts in the lower stratosphere (15-20 km) are the same at all

SHADOZ sites (Figure 12, Thompson et al.,, 2003a).

. Instrument manufacturer bias, deduced from four SHADOQZ stations where a mixture of
instrument type had been employed, was uncertain. Two stations showed no variation.
In two others, the ENSCI instrument registered several percent more ozone than the
Science Pump (SPC) instrument.

Because the World Meteorological Organization (WMO) uses SHADOZ as a model for
developing procedures for new stations in the Global Atmospheric Watch (GAW) program, it is
important to understand possible instrument influences on the ozone profiles at individual
SHADOZ stations. Chamber test experiments (JOSIE series = Jiilich Ozonesonde
Intercomparison Experiment) were conducted under WMO sponsorship in 1996, 1998 and 2000.
In JOSIE-2000, techniques used in the SHADOZ network were intercompared through a
standard ozone reference instrument. In this paper:

. Total ozone column amounts from the SHADOZ sondes are compared to version 8 (v 8)
TOMS, a new processing of the satellite 0zone measurement that uses SHADOZ ozone
profiles. Offsets of sonde total ozone with TOMS v 8 and with colocated total ozone
instruments from six SHADOZ stations are compared with the corresponding sonde and

TOMS version 7 (v 7) offsets.

. Variations in total stratospheric column ozone and upper and lower stratospheric ozone
columns are compared among stations to see where biases might occur.

. A SHADOZ climatological “tropical ozone profile” is used to examine variations in

ozone profiles at individual sites. The latter results are compared to JOSIE chamber

profiles to help interpret ozonesonde performance in SHADOZ operations.
2 Observations and Methods.

2.1 SHADOZ Data.

The SHADOZ ozonesonde measurements are made with electrochemical concentration
cell (ECC) ozonesondes, in which air pumped through a cell containing a potassium iodide (KI).
Sampled ozone is oxidized producing an electrical proportional to the amount of ozone in the
atmosphere [Komhyr, 1967; 1986]. The signals are transmitted to a ground receiver and the
ozone partial pressure is recorded through comparison with the pressure readings of an
accompanying radiosonde. Designed to measure ozone concentrations from the surface to above
the ozone concentration maximum, the ozonesonde-radiosonde package is flown with a balloon
that usually bursts at 4-8 hPa.

SHADOZ was initiated (January 1998) with nine southern hemisphere stations and
presently numbers twelve sites. Irene soundings began in late 1998 and Paramaribo, the first
northern hemisphere station, started in late 1999. Launches are nominally weekly, with
occasional additions during field campaigns. Experimental details are at:
<http://croc.gsfc.nasa.gov/shadoz> and in the Appendix of Thompson et al. [2003a]. A summary
of station technique, latitude and longitude appears in Table 1.

For the present analysis, sounding data from the SHADOZ archive for 1998-2002 are
used except in comparisons with TOMS where 1998-2001 data are employed. After 2001 the
Earth-Probe (EP)/TOMS instrument diverged too much from the Dobson network to be reliable
for our purposes [R. McPeters, personal communication, 2004].

The sonde instrument is not ideal for calculating total ozone because typically 15-20% of
the ozone column is above the balloon burst, the pressure measurement of the radiosonde can
become become noisy and the sampling pump rate changes. Note the following about our
calculations of total ozone from SHADOZ sondes. First, no normalization is made to total ozone
from another instrument, such as a satellite or a co-located ground-based total ozone sensor.
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Second, only data from balloons that reached at least 10 hPa are used in computing integrated
ozone. During the1998-2000 period 75% of SHADOZ launches reached 7 hPa (analyzed in
Thompson et al., 2003a). For the present analysis we choose a larger set of profiles with the 10
hPa criterion. To integrate to 1 hPa, an “evaluated ozone residual” from the SBUV satellite
climatology of McPeters ef al. [1997] gives an extrapolation from 10 hPa or balloon burst,
whichever is higher. Extrapolation by assuming a constant mixing ratio (CMR) for ozone above
balloon burst is useful for some diagnostic purposes but gives an erroneous total ozone. The
third feature of SHADOZ records is that a TOMS overpass value is taken from the orbit that
passes most closely to the station at roughly local noon. Most stations launch ozonesondes
between 0700 and 1000 local time, so the satellite and sonde measurements are well-matched.
2.2 The Ozonesonde Measurement. JOSIE-2000.

Differences in data processing, as well as in sonde manufacturer and instrument
preparation, can contribute to systematic variations among ozone measurements. Johnson et al.
[2002], Thompson et al. [2003a] and Smit and Striter [2004a,b] describe factors that may affect
the ozonesonde measurement at SHADOZ sites. These include (a) the background current; (b)
the concentration of potassium iodide (KI) in the cell anode and cathode; (c) strength of any
buffer used; (d) the factor used to correct for the decline in pump efficiency as the sonde
ascends. JOSIE experiments conducted in 1996, 1998 and 2000 suggested that these factors
could be significant [WMO, 1998b; Smit and Striter, 2004a,b], although (a) has become a more
minor issue with improvements in cell manufacture. SHADOZ stations include a range of
solution composition (Appendix in Thompson et al., 2003a) and at least two methods of applying
the factor to correct for pump efficiency (PCF). For example, the technique at the four Pacific
stations in SHADOZ is uniform and the same instrument type (SPC) is normally used. Likewise,
uniform procedures are employed at Natal and Ascension (differing sensor concentration from
the Pacific stations), normally with the SPC instrument.

The instrument type and sensing solution were varied in the JOSIE-2000 campaign, as
shown in Tables 1 and 2. Two teams of four investigator groups participated. Each group
prepared instruments for eight chamber simulations. The tests were conducted at the
Forschungzentrum-Jilich environmental simulation facility [Smit et al., 2000, <http://www fz-
juelich de/icg/icg-ii/esf>, established as a World Calibration Centre for Ozonesondes (WCCOS)
to aid in quality assurance within the WMO/GAW network. Two tropical, two sub-tropical and
two mid-latitude simulations were carried out by each group along with response time tests.
Data displayed here were processed by Smit and Strater [ 2004a,b]. Further details of JOSIE
operations appear at the website: http://www fz-juelich de/icg/icg-ii/josie>.

Table 2. JOSIE-2000 tests simulating SHADOZ conditions.

Test Date Simul. No. | Condition SHADOZ Participant

10 Sept 2000 91 Tropical NOAA/CMDL

11 Sept 2000 92 Tropical «

14 Sept 2000 94 Sub-tropical «

15 Sept 2000 95 Sub-tropical «

20 Sept 2000 98 Tropical NASA/WFF, Meteoswiss,
Univ. Réunion

21 Sept 2000 99 Tropical “




24 Sept 2000 100 Sub-tropical “

26 Sept 2000 102 Sub-tropical «

3. Total Ozone: Comparison to Independent Measurements, Station Variability

Accuracy of the sonde total ozone measurement from 1998-2000 data was evaluated
through comparison with total ozone measured by co-located ground-based instruments (Dobson
and Brewer) at five SHADOZ sites (Figures 6 and 9 in Thompson et al, [2003a]). At each
station, total ozone is also compared to the EPA/TOMS overpass total ozone column.

3.1 Total Ozone Comparisons - TOMS version 8

Figure 1 shows daily TOMS overpass data (v 8 processing, 2004 release) for 1998
through 2001 for five stations, together with total ozone integrated from the sonde (as described
in Section 2) and ground-based instrument (a and e symbols, respectively). The ground-based
Dobson spectrophotometers are regularly calibrated (four sites). At Paramaribo the ozone
column is based on a Brewer instrument [Peters et al., 2004]. In the lower panel, offsets among
sonde, TOMS, and the ground-based instrument are shown. Total ozone comparisons similar to
those in Figure 1 were depicted in Thompson et al. [2003a] using TOMS v 7 ozone.

The ozone column measurement from the sondes in Figure 1a is >5% lower in 1998-1999
compared to 2000 onward. From 1997-1999 a change in the solution composition recommended
by the ENSCI manufacturer (0.5% KI compared to 1%) was employed at Natal even when the
SPC sonde was flown. This is consistent with results of the JOSIE tests. During JOSIE-2000 it
was shown that when the same instrument type and data processing are used, the 0.5% KI
solution gives an averaged 5% lower ozone throughout the profile than does the 1% KI solution
[Smit and Striter, 2004b]. In addition to known changes in the sonde technique at Natal, there is
evidence in both the colocated Dobson and Brewer instruments (the latter not shown) that TOMS
ozone declined and became more variable in 2001 compared to the prior four years. Similar
behavior among Brewer, Dobson and TOMS ozone was noted at Cachoeira Paulista, Brazil (238,
38W; V. W.J. H. Kirchhoff and N. Paes Leme, unpublished manuscript, 2004).

The African stations are those with the closest agreement between TOMS and the sonde
total ozone column (Figures 1b,c). This holds throughout the SHADOZ record, although the
Dobson at Irene seems noisier in 1998 than later on. Both the Nairobi and Irene Dobson
instruments were calibrated with the traveling world standard Dobson in Pretoria in April 2000.
Data from the Nairobi Dobson are not available after that time. Judging from the sonde and
Dobson, the TOMS instrument appears stable over Irene from 1998-2001. In Thompson et al.
[2003a] it was noted that Irene and Nairobi are the two SHADQZ stations with elevation > 1 km.
This possibly implied better agreement at sites with less tropospheric air mass because TOMS is
not very sensitive below 500 hPa [Hudson et al., 1995]. However, Thompson et al. [2003a] also
found (cf Figure 3 below) that much of the disagreement between TOMS total ozone and the
sonde integral originates in the stratospheric part of the ozone profile. With Figure 2 showing
similar TOMS-sonde offsets at Malindi (sea-level) and Nairobi (1.3 km altitude, 400 km from
Malindi), there is further evidence that tropospheric discrepancies do not dominate.

At Samoa (Figure 1d) TOMS total ozone appears to be declining relative to the sonde
measurement, although the early 1998 sonde data are too noisy to be definitive in this respect.
There is less drift in TOMS compared to the Dobson. The tendency for the TOMS ozone
column to exceed that of the Dobson by overestimating tropospheric ozone in the satellite
algorithm (Figure 8c in Thompson et al., 2003b), appears unchanged in the transition from v 7 to
v8.

At Paramaribo (Figure 1e) sonde total ozone is consistently greater than the TOMS v 8



measurement and the Brewer is frequently less than the satellite ozone. In both cases, though
less than three years of data are given, a TOMS downward drift is suggested in the second half
of 2001. Sonde total ozone is nearly 10% higher than TOMS, on average, at that time.
Paramaribo is north of the ITCZ most of the year, quite distinct from other SHADOZ stations
and the ozone profile (and integrated column) may indeed diverge from them. Accordingly, in
most subsequent comparisons, we do not compare Paramaribo data with the southern hemisphere
data.

In Figure 2, where the TOMS-sonde total ozone differences are displayed for both v 7
and v 8 TOMS, Paramaribo shows a negative deviation. Figure 2 also shows a tendency for the
Pacific SHADOZ stations and Watukosek to be biased lower relative to TOMS than the Atlantic
and African stations. One reason for this is that the TOMS algorithm (both versions 7 and 8)
assumes a greater tropospheric ozone column depth (29.8 DU; Table 4 in Thompson et al ,
2003b) than actually measured at the Pacific stations (mean tropospheric column depth, ~19
DU). There is only a 1-2 percentage point change to the TOMS-normalized data at the
SHADOZ stations (Table 3) using v 8 compared to v 7. However, agreement between the
southern hemisphere Dobson stations and TOMS v 8, spanned within the shading in Figure 2,
improved over v 7 (compare offsets shown in [Bodeker et al., 2001]).

3.2 Stratospheric Ozone Comparisons from SHADOZ Sondes

We also examined the integrated stratospheric ozone column to see whether some of the
SHADOZ station variability is due to stratospheric ozone variability among the sites (refer to
Figures 10-12 in Thompson et al. [2003a]). These analyses are performed with the 1998-2002
sondes in three ways, as illustrated in Figures 3a-c. The total integrated stratospheric ozone
column in Figure 3a includes the measured ozone column to 10 hPa and the SBUV
extrapolation. The latter quantity is an average by month and latitude band, i.e., 0-10N, 0-10S,
10-20S [McPeters et al., 1997]. The range of SBUV extrapolation values used for 10-1 hPa is
36-48 DU. Figure 3a, which presents the total integrated stratospheric ozone column (+ 1-0),
shows all the stations overlapping except for Ascension Island (lowest at 167 DU) and
Paramaribo (highest at 196 DU). All other SHADQZ stations are within the range 177-192 DU.
In Thompson et al. [2003a] it was concluded that the SHADOZ record does not show a
statistically significant stratospheric wave-one pattern. Additional data in the present analysis
(~40% more profiles than in Thompson et al. [2003a]) lead to the same conclusion.

Two diagnostics are used to look more closely at stratospheric variability: the 15-20 km
integral (~110-60 hPa) and the CMR extrapolation. Figure 3b, depicting the lower stratospheric
integrated ozone column, shows almost no variation among the SHADOZ stations (compare
Figure 11 in Thompson et al. [2003a], where 1998-2000 data were used). An exception is Irene,
where roughly half the observations are made at mid-latitude conditions. Not counting Irene, the
range of mean 15-20 km ozone column is ~4 DU. The 15-20 km ozone column uniformity is
taken as further evidence for the lack of a stratospheric wave because zonal variation is expected
in the lower stratosphere [Shiotani and Hasebe, 1994; Newchurch et al., 2001].

The CMR is used to diagnose the relative behavior of the upper stratosphere which is not
expected to vary among the southern hemisphere SHADOZ sites. In Figure 3¢, raw CMR values
are not displayed but rather their deviation from the SBUV add-on for each station (Table 2).
Variations in the CMR-SBUYV parameter may reflect the effect of the sensing solution, the
instrument used or data processing (primarily the PCF employed by each station Co-
Investigator). Here, in contrast to the lower stratosphere bias (Figure 3b), the range across the
SHADOZ stations exceeds 10 DU. The Atlantic stations (Paramaribo-Natal-Ascension) are
relatively high whereas for total stratospheric ozone, Natal and Ascension are relatively low
(Figure 3a). Irene, Fiji and San Cristobal are the lowest in normalized CMR. Can the precision
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of the stratospheric quantities be estimated using the CMR normalized statistics? The Natal-
Ascension pair and Fiji-Samoa pair are only 4 DU apart. Nairobi and Malindi, stations ~400 km
apart, are within 2 DU of one another in all three stratospheric analyses shown in Figure 3.
3.3 Implications of JOSIE-2000 for SHADOZ Total and Stratospheric Ozone
How do we interpret some of the apparent systematic differences among SHADOZ
stations? The possibility of instrument effects is considered by referring to selected JOSE-2000
results. First, the deviation between integrated ozone from the sonde in the chamber relative to
the ozone photometric (OPM) standard is compared to normalized total ozone from SHADOZ
sites. In other words, TOMS, the ground-based instruments and the OPM are treated as
standards through which the sonde ozone total is intercompared. Figure 4 depicts the following:
. Ozone data from the test chamber integrated from surface conditions to 10 hPa using the
appropriate instrument type for a given SHADOZ station differenced with the integrated
ozone from the JOSIE-2000 OPM. The chamber ozone column was computed with the
participant’s own pump correction factor to capture possible processing biases as well as
effects of instrument type and sensing solution.

. Ozone integrated from the SHADOZ station sondes relative to TOMS total ozone from
satellite overpasses (as in Figure 2).
. Total column ozone from ground-based instruments at five SHADOZ stations (four

Dobsons, one Brewer) differenced to the TOMS overpass total ozone.

Figure 4 shows that differences between sonde total ozone from the three Pacific stations
and Watukosek and v 8 TOMS (with the sonde reading low relative to the satellite) are mostly
consistent with the JOSIE-2000 results. The field instruments (SPC) read ~7% lower than
TOMS at Samoa and Fiji. That is nearly identical to the JOSIE deviation from the OPM and
within 2% of the TOMS-sonde offsets at Watukosek, where the same technique (NOAA/CMDL
method) is used. The TOMS-sonde agreement at San Cristobal is similar to Samoa and
Watukosek but the TOMS-sonde discrepancy is slightly worse than the JOSIE sonde-OPM
disagreement. Dobson-TOMS (Samoa) and Brewer-TOMS (Watukosek) offsets are smaller (2%
absolute) than the sonde-TOMS offsets for these stations and for San Cristobal and Fiji.

Natal shows close agreement between the sonde-TOMS discrepancy (Figure 4) and the
JOSIE-2000 chamber tests, where the sonde ozone total was ~2.5% lower than the standard. The
Dobson, however, was ~2.5% higher than TOMS ozone at Natal. Also, in Figure 4, JOSIE-2000
tests show the instrument type (ENSCI) reading greater in total ozone than the OPM standard for
the Réunion and Meteoswiss (Nairobi) participants. The sondes recorded 6-7% greater ozone
than the reference. For the corresponding SHADOZ measurements at Nairobi, total ozone
normalized to TOMS reads higher than at all other stations but one (Malinidi). However, the
TOMS-sonde offset at Nairobi is less than the bias of the corresponding JOSIE instruments. The
TOMS-sonde offset based on Réunion measurements differs nearly 10% from the chamber tests.
4. SHADOZ Ozone Profile Analysis

Although there are relatively small differences in stratospheric ozone column among
SHADOZ stations, it is important to evaluate variability arising from the ozone measurement in
various parts of the profile. This is done in two steps. First, mean SHADOZ ozone profiles from
each station are compared to an overall mean SHADOZ profile. Second, biases in the
stratospheric ozone segments at SHADOZ stations are compared to corresponding behavior of
the station technique as tested in JOSIE-2000.

4.1  Characteristics of Mean SHADOZ Profiles

Figure 5 shows the mean profile from each southern hemisphere SHADOZ station. The
CMR isolines are drawn to show tendencies for upper stratospheric variability among the
SHADOZ stations. What is observed? For the three Pacific stations and Watukosek (Figure Sa).
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ozone profiles are nearly identical in the lower stratosphere but there is divergence at the
stratospheric maximum. For Watukosek the maximum occurs at ~15 hPa and the corresponding
partial pressure is 14 mPa. For Fiji the maximum partial pressure is ~13mPa. Extrapolations
above 7 hPa (the minimum pressure plotted) fall between the 8 and 10 ppmv isolines. The
tropospheric profiles of the three Pacific stations are similar in integrated column amount and
shape. At the surface, ozone is < 2 mPa (14.5 ppbv), declining to the top of the mixed layer.
Ozone then increases to ~600 hPa where a second decline begins that continues to the
tropopause. The lower tropospheric layer of maximum ozone is due to imported pollution. Only
at Watukosek, among SHADOZ sites, does pollution-level ozone occur at the surface.

Figure 5b shows that the two Atlantic and two Kenyan stations are similar in the
stratosphere (~ 15 mPa at maximum) except for Ascension where the maximum partial pressure
is < 14hPa. The upper stratosphere ozone (signified by CMR isoline at 12 ppmv) for Natal,
Nairobi and Malindi is also greater than for Ascension. In the troposphere, Natal and Ascension
have peak ozone partial pressure at 700 hPa, a consequence of long-range transport of pollution.
Back-trajectories initialized at 700 hPa from Natal and Ascension on days of ozonesonde launch
(images available at the SHADOZ website) show African origins for the highest ozone episodes.
The two sub-tropical SHADOZ stations (Figure 5c¢) have peak ozone partial pressure closer to 30
hPa than to 20 hPa (compare the tropical maximum in Figures 5a,b). Sub-tropical profiles are
signified by more ozone throughout the lower stratosphere and upper troposphere. In the
uppermost stratosphere, Irene and Réunion differ, with the latter always higher. This causesa 5
DU difference in the normalized CMR between the two stations (Figure 3c).

For purposes of examining relative features of individual station profiles, it is useful to
define “mean tropical” and “mean sub-tropical” ozone profiles from SHADOZ data. These can
be viewed as analogous to the JOSIE-2000 OPM “standard” tropical and sub-tropical profiles. A
SHADOZ “mean tropical” ozone profile, with 1-o standard deviation (Figure 6a), is based on the
eight stations illustrated in Figures 5a and 5b plus 1998-1999 statistics from Tahiti (see Table 3
in Thompson et al. [2003a]). For Watukosek, only data from after July 1999, when soundings
with ECC instruments were initiated, appear in the average. Likewise, the Réunion (21°S) and
Irene (26°S) ozone data are used to define a SHADOZ “mean sub-tropical” ozone profile (Figure
6b.) The integrated ozone column amounts show a tropical-sub-tropical difference of ~15 DU:

Integrated ozone, surface--10 hPa: 189.4 DU, tropical  206.1 DU, sub-tropical
Integrated ozone, surface--7 hPa: 212.5 DU, tropical  225.4 DU, sub-tropical
4.2  SHADOZ Ozone Profile Climatologies Relative to Means

In Figure 7a-h individual station ozone profiles, normalized to the SHADOZ tropical
mean, are depicted. Positive deviations signify a higher bias at the same pressure at a SHADOZ
station relative to the climatological ozone value. Tropospheric absolute deviations sometimes
exceed 40%. In the stratosphere (taken as above 100 hPa for convenience), the deviations rarely
exceed 10%. On average, above 70 hPa, Samoa (Figure 7a) is closest to the climatological mean
with absolute deviation < 5% up to 10 hPa. Above 80 hPa San Cristébal (Figure 7b) is also close
to the climatology and the shape is quite uniform throughout the stratosphere. Fiji is distinctive
among the stations illustrated (Figure 7c) in having the largest positive deviation in the lower
stratosphere between 40 and 95 hPa. Ascension and Natal (Figures 7d,e) parallel one another in
the stratosphere. There is a monotonic change in the deviation, starting from station sondes
biased low relative to climatology. At 10 hPa, both are within 5% of the mean ozone value and
5-10% greater than Samoa, San Cristobal and Fiji at 10 hPa. Nairobi deviations (Figure 7f)
resemble Ascension and Natal throughout most of the stratosphere. An exception is in the 80-60
hPa range where the Nairobi sondes are greater than climatology by ~5% and Ascension and
Natal (Figures 7 d,e) are low by 5-10%. Malindi (Figure 7g) has positive deviations throughout

7



the stratosphere, similar to Nairobi (Figure 7f). Watukosek (Figure 7h) has the greatest deviation
from the mean at the 100 hPa level but above 60 hPa is always within 5% of the mean.

The results shown in Figure 7 are explored further to see if the tendencies recorded in
ozone above 100 hPa are consistent with the total ozone patterns and with independent
evaluation of the SHADOZ technique. First we ask: (1) How do the profile deviations from a
SHADOZ tropical climatology (depicted in Figure 7) compare to variability in total ozone from
among the stations? The information summarized in Figure 7 is compared to Figure 3 and Table
3. Figure 3 showed that column-integrated stratospheric ozone to 10 hPa at Samoa, San
Cristobal, Watukosek and Fiji fall within a 7 DU (177-184 DU) range of one another. This is
consistent with Samoa and San Cristobal having profiles close to the tropical mean (Figures
7a,b). The deviations within the Fiji profile (Figure 7¢), positive above 30 hPa and negative
below, apparently cancel out in the stratospheric integral. Table 3 (also Figure 3a) shows the Fiji
stratospheric column (179.7 DU) close to the all-southern tropical station mean (181.8 DU).

Figure 3 and Table 3 show Ascension ~10 DU less in stratospheric column than the other
stations whereas Nairobi and Malindi are ~10 DU greater. Figure 7 indicates how these
variations might come about. The Ascension stratospheric profile (Figure 7d) is 5% lower than
climatology, on average, throughout the stratosphere. However, at 80-100 hPa, Ascension is
greater than climatology so the 15-20 km column integral (Figure 3b) does not deviate
significantly from the other stations. Natal (Figure 7e), like Fiji, has deviations both positive and
negative so that its stratospheric integral falls near the mean (Figure 3a). Nairobi and Malindi
(Figures 7f,g) are roughly 5% higher than the climatological profile throughout the stratosphere.
4.3 SHADOZ Profile Biases and JOSIE-2000 Results

How do the deviations at individual SHADOZ stations, relative to the tropical
climatology, compare to profile deviations for the given technique as recorded in the JOSIE-
2000 tests with a reference ozone standard? Figure 8 illustrates the stratospheric offsets from the
SHADOZ climatology (as in Figure 7) along with deviations between the corresponding
chamber instrument and the JOSIE OPM. The latter deviations plotted are based on the
participants specified comrections (PSC). Figure 7 in Johnson et al. [2002] shows that the PSC
adds 5-10% to the measured value above 100 hPa for all but one method used in SHADOZ
(Table 1; see also Table A-1 in Thompson et al. [2003a]). The exception is a higher PSC (up to
20% added) used where the NOAA/CMDL technique is employed (four Pacific stations and
Watukosek after July 1999).

Comparisons are given for three instrument types: NOAA/CMDL method (Samoa, Fiji,
San Cristobal, Figures 8 a,b); NASA/WFF method with Natal and Ascension (Figures 8 c,d); the
Meteoswiss method with Nairobi (Figures 8e,f). Figures 8a and 8b represent two tropical
JOSIE-2000 simulations and display, respectively, the deviations of the sonde from the OPM
standard with the NOAA/CMDL sensing solution (2% KI, no buffer) in cells of SPC and ENSCI
manufacture. The NOAA/CMDL method is low (~50%) compared to the OPM at 100 hPa. As
the pressure falls below 60 hPa, agreement improves to within 10% of the standard, averaging a
little below the OPM in Figure 8a (the SPC instrument) and a little above the OPM (ENSCI) in
Figure 8b. For the NASA/WFF (Figure 8c,d) and Meteoswiss (Figure 8e,f) methods, JOSIE-
2000 also shows an underestimate of ozone relative to the OPM in the 100-60 hPa range, though
of less magnitude (10-20% deviation) than the NOAA/CMDL method. Deviations of
NASA/WEFF JOSIE and SHADOZ Natal sondes minimize at 40 hPa (Figure 8c,d).

In Figure 8 the low-ozone bias in all cases in the 100-60 hPa region in the JOSIE-2000
tests reflects the very low absolute ozone amount at 100 hPa in the simulated profile. The sonde
responses, determined in pre-experiment tests (or pre-launch, in the field), are typically 22-35
seconds, whereas the photometer senses an ozone change within a second. In the chamber
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simulation, the ozone partial pressure was nearly zero from 180-100 hPa. Above 100 hPa, as in

the tropical atmosphere, ozone increases sharply but the sondes never respond as quickly as the

photometer. As ozone continues to increase with decreasing pressure, the percentage lag is less;
the agreement with the OPM improves.

Differences among sonde performance in the JOSIE-2000 stratospheric simulations also
reflect variations in the sonde sensing solution and ECC instrument type. The large contrast in
sonde response in the 100-60 hPa range when the NOAA/CMDL method (Figure 8a,b) is
compared to the other two methods (Figures 8c-f) stems from a difference in buffering of the K1
solution. After a strong ozone signal has been measured, a buffered solution responds to lower
ozone sluggishly, a “memory” effect. The unbuffered NOAA/CMDL solution (Figure 8 a,b)
appears to have a greater lag in the 100-60 hPa region relative to the NASA/WFF and
Meteoswiss instruments (with buffered solutions) because there is no memory from previous
measurements. Thus, the apparent better ozone response of the NASA/WFF and Meteoswiss
instruments in the lower stratosphere, either simulated or when Fiji offsets (Figure 8a,b) are
compared to Natal or Nairobi (Figures 8c-f), for example, is partly an artifact of the solution.

The impact of buffering may be significant in the upper stratospheric portion of the ozone
profile (40-10 hPa in Figure 8) where the ozone maximum occurs. However, this influence is
more difficult to gauge because PSCs are included in both the JOSIE-2000 and SHADOZ data.
In the case of the NOAA/CMDL method (Figure 8a,b) the JOSIE-2000 tests show a slight
positive bias above 20 hPa but the SHADOZ data are all relatively low compared to the tropical
climatology. Fiji, Samoa, San Cristobal ozone deviations (Figure 8a,b) average ~15% lower
than ozone at Nairobi above 20 hPa (Figure 8e,f) and 5-10% lower than Natal (Figure c,d).

The Meteoswiss JOSIE-2000 results and SHADOZ Nairobi sonde deviations (Figure
8e,f) generally follow one another. The Nairobi sondes are higher than the SHADOZ
climatology throughout the stratosphere. The JOSIE-2000 tests showed a mostly positive bias
for the Meteoswiss method above 65 hPa. The Meteoswiss and NASA/WFF results appear to
illustrate a difference in instrument type. The JOSIE readings shown in Figures 8c-f were taken
during the same chamber simulations (Nos. 98 and 99) with identically prepared sensing
solution. Relative to the OPM, the raw signal recorded with the Meteoswiss ENSCI instruments
measured 5-10% more ozone throughout the simulated stratosphere than NASA/WFF with SPC.
This is equivalent to an integrated ozone difference of ~20 DU, similar to the high-bias depicted
for Nairobi in Figure 3a. These contrasts resemble those of the Nairobi sondes relative to the
SHADOZ tropical climatology and to the Natal and Ascension offsets above ~85 hPa (compare
Figures 8c and 8e). The tendency for the ENSCI instrument to record 5-7% more total ozone
from 100-10 hPa than the SPC when the same solution composition and processing are
employed, was a major finding of JOSIE-1998 and JOSIE-2000 [Smit and Striter, 2004a,b]. The
same behavior is observed when ENSCI and SPC instruments prepared identically are launched
on the same balloon [Johnson et al., 2002; F. J. Schmidlin, personal communication, 2003]. The
high ENSCI bias may explain why Watukosek is higher in the upper stratosphere than similarly
prepared sondes at the three Pacific stations where the SPC instrument is used (Figure Sa)

S. Summary

In the first part of this paper total ozone columns from SHADOZ stations are compared
to the new v 8 TOMS total ozone product for the period 1998-2001. At five SHADOZ sites,
comparisons are also made with ground-based instruments that measure total ozone. The results
can be summarized as follows:

1. Comparison of total ozone from the SHADOZ sondes and v 8 TOMS shows that, on
average, the satellite records greater ozone column amount than the sondes or co-located

Dobson instruments. An exception is at Paramaribo, where the sonde total ozone is more
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than 5% greater than the satellite overpass amount. These results are similar to sonde

comparisons with v 7 TOMS [Thompson et al., 2003a] but there is a 1-2% improvement

in agreement between the sonde ozone and v 8 TOMS due to re-calibration of TOMS.

2. Station-to-station total column differences between sonde and TOMS v 8 ozone,
averaged from 1998-2001, are similar to those for 1998-2000 based on comparisons with
TOMS version 7 [Thompson et al., 2003a]. Also similar to v 7, the worst agreement
between TOMS v8 and the southern hemisphere sondes occurs at stations with the lowest
tropospheric column ozone.

3. Evaluation of column ozone segments within the stratosphere, based on 1998-2002
SHADOZ data, shows the same stratospheric uniformity (no longitudinal wave-one) and
upper stratospheric biases reported by Thompson et al. [2003a].

In the second part of our analysis, variability among SHADQZ stations, normalized to a
climatological profile, is evaluated through comparison with instrument performance in JOSIE-
2000 chamber simulations of balloon ascents in a tropical regime. The major findings include:
4. Nairobi sondes from SHADOZ show a high-ozone bias throughout the stratosphere

relative to the other southern hemisphere station data. As a result, the mean stratospheric

ozone column amount over Nairobi is ~15 DU higher.

5. The JOSIE-2000 chamber tests suggest that the high-ozone bias at Nairobi can be
explained by a combination of the instrument type and sensing solution employed by the
Meteoswiss-Kenya Meteorological Department. Above the 20-km mark in the JOSIE
chamber, the Meteoswiss (ENSCI) instrument read 5-10% higher than the NASA/WFF
instrument (SPC) that used the same solution type. Similar contrasts occur in normalized
Nairobi and Ascension/Natal ozone profiles.

6. In JOSIE-2000 too low ozone was measured in lower stratospheric segments (100-60
hPa) where sonde responses lag the standard photometer by 20-30 seconds. This effect
appears in segments of four SHADOZ stations (Ascension, Natal, Samoa, San Cristobal).

7. The impact of sensing solution composition on SHADOZ station variability is harder to
assess because PSCs are included in the archived data. JOSIE-2000 results show
memory effects associated with buffered solutions (used at all sites except those with the
NOAA/CMDL method), especially in the lowest ozone segments (~100 hPa). The
memory effects may also explain positive offsets above 20 hPa at Nairobi and Natal. At
Fiji, Samoa and San Cristobal, where unbuffered solutions are used, upper stratospheric
ozone profiles are lower than the SHADOZ-defined climatology.

Bearing in mind that SHADOZ statistics represent hundreds of balloon flights at some stations,

compared to a small number of simulations in the JOSIE-2000 test chamber (two prototype

profiles/technique), it is gratifying to note that sonde deviations in JOSIE are roughly reflected in
the sonde biases within the SHADOQZ dataset. Ozonesonde instrument issues will be further
evaluated with results from an April 2004 balloon intercomparison called BESOS (Balloon

Experiment for Standards of Ozonesondes; <http.//croc. gsfc nasa gov/besos™>). As in the JOSIE

experiments, BESOS features a standard ozone photometer through which a set of sondes flown

on the same gondola are intercompared (cf Hilsenrath et al., 1986).
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Table 1. SHADOZ sites, instrument technique, parameters during JOSIE-2000 tests.

SHADOZ Sites Lat./Long. (deg) Station | Station | JOSIE | JOSIE
Meth. Instru. Meth.* | Instru.
Suva, Fiji -18.13 178.40 | 2% KI SPC 2%KI | SPC
Pago Pago, Am. Samoa -1423 | -170.56 | 2%KI SPC 2%KI1 | SPC
Papeete, Tahiti -18.00 | -149.00 | 2%KI SPC 2%KI | SPC
San Cristobal, Galapagos 092| -89.60|2%KI |SPC 2%KI | SPC
Paramaribo, Surinam 5.81 -552 | 1%KI SPC — -—
Natal, Brazil 542 -35.38 | 1%KI SPC ** 1%KI1 | SPC
‘| ENSCI
Ascension Island 798| -1442 | 1%KI | SPC** |1%KI |SPC
ENSCI
Irene, South Africa -25.25. 28.22 | 1%KI SPC —_ —
Nairobi, Kenya -1.27 36.80 | 1%KI ENSCI 1%KI | ENSCI
Malindi, Kenya -2.99 40.19 | 1%KI SPC — —
La Réunion 2106| 5548]5,1% |SpCe** |.5,2% |ENSCI
KI ENSCI |KI
Watukosek, Indonesia -7.57 112.65 | 1%? ENSCI —_ —_
Kaashidhoo, Maldivest 5.0 73.5 | 2%KI ENSCI | — —_
Aerosols99 Cruiset - - 1 2%KI ENSCI - —

* Responsible Co-I JOSIE participant: NOAA/CMDL for Fiji, Samoa, San Cristobal, Tahiti; NASA
Wallops Flight Facility (WFF) for Natal, Ascension; Méteosuisse for Nairobi; Univ. Réunion for La
Réunion. FZ-Juelich JOSIE participant test method used at Irene, Paramaribo.

** Mixture of solution strengths, instruments used; see details in Thompson et al. [2003a]

t Campaign data in SHADOZ archive. 23 sondes from Aerosols99 cruise, January-February 1999
[Thompson et al., 2000]; 54 sondes from Kaashidhoo taken during late January-March 1999 [Figure 11b
in Thompson et al., 2003b]
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Figure Captions

Fig1 UpperPanel: A comparison of integrated total ozone from sondes, TOMS satellite (Level 2,
version 8) overpasses and Dobson or Brewer instruments at the following SHADOZ stations:
(a) Natal; (b) Nairobi; (c) Irene; (d) Samoa; (e) Paramaribo. Lower Panel: % deviation
relative to the sonde or the ground-based instrument (TOMS version 8). Sonde-ground-based
instrument differences are indicated by a*. Integrated ozone from sondes based on data to
10 hPa with extrapolation above 10 hPa from McPeters et al. [1997] climatology. In
Thompson et al. [2003a)], comparisons are with TOMS v 7 total ozone and sondes reaching 7
hPa before balloon burst. Overall features using v 7 resemble those shown here with v 8.

Fig2 Summary of averaged differences between total ozone from SHADOZ sondes and from
TOMS (v 7; cf Figure 9, Thompson et al., 2003a) and sondes and TOMS v 8. Datato 10 hPa
(Table 3) with SBUV extrapolation are used for sonde total ozone. Shaded region
corresponds to “best total ozone” based on Dobsons and most recent TOMS calibration.

Fig3 (a) Zonal view of stratospheric column ozone determined from integrated stratospheric
ozone of soundings plus SBUV extrapolation. Bars indicate 1-0 standard deviation. For
Irene, column may be higher because mid-latitude stratospheric conditions often prevail. The
lack of distinct zonal variation in the stratospheric column signifies the absence of a zonal
wave-one in the stratosphere. However, uncertainty about the tropopause location introduces
4-5 DU imprecision in the values shown and a wave amplitude smaller than that could not be
verified; (b) zonal view of integrated column ozone (DU) between 15 and 20 km, with 1-0
standard deviation; (c) zonal view of the difference between average CMR (constant-mixing-
ratio) extrapolations and SBUV for SHADOZ stations.

Fig4 Summary of averaged differences between total ozone from SHADOZ sondes and from
TOMS (*, v 8, as in Fig 2) with difference between co-located ground-based total ozone and
TOMS (T, v 8). Also shown for each station is the mean difference in total ozone between
the representative JOSIE-2000 sonde type and the JOSIE-2000 chamber standard (O, standard
= OPM, ozone photometer).

Fig5 Mean ozone profiles (from 1998-2002) from soundings that reached 7.0 hPa pressure based
on 0.25 km averages. (a) Pacific, eastern Indian Ocean stations: Fiji, American Samoa, San
Cristobal, Watukosek; (b) Atlantic and Kenyan sites: Natal (Brazl), Ascension, Nairobi,
Malindi; (c) two sub-tropical stations in SHADOZ, Réunion and Irene. The standard
deviation (1-0) for these averages is +/-1.5 mPa at the stratospheric maximum and ~0.3 mPa
elsewhere in the stratosphere. In the middle troposphere, due to large natural variability, the
1-0 standard deviation is ~0.5 mPa at the Pacific stations and > 1 mPa at the others. Constant-

14



Fig6

Fig 7

mixing ratio (CMR) isolines are also illustrated. Our CMR definition uses the uppermost
measured points before 7 hPz, then adds a column amount up to 1 hPa. The corresponding
mean CMR above 7.0 hPa is given in Table 3.

Climatological mean profiles based on 1998-2002 SHADOQZ data with mean and 1-0 standard
deviation (shaded). (a) “tropical” based on all southern hemisphere SHADOZ stations except
Réunion and Irene; (b) “sub-tropical” based on Réunion and Irene data. Constant mixing
ratio isolines shown.

Mean SHADOZ station profiles (1998-2002) shown in Figure Sa,b normalized to the
climatological mean in Figure 6a. (a) Samoa; (b) San Cristobal; (c) Fiji; (d) Ascension; (e)
Natal; (f) Nairobi; (g) Malindi; (h) Watukosek.

Fig 8 Same deviations as Figure 7 except stratospheric portion of sonde illustrated from 100-10 hPa.

Stations are clustered according to technique used. Also shown are deviations of participant
specified corrections (PSC) from OPM standard in JOSIE-2000. (a,b) NOAA/CMDL JOSIE
with deviations from SHADOZ tropical mean profile for Samoa, Fiji, San Cristobal; (c,d)
NASA/WFF JOSIE deviations with SHADOZ deviations based on Natal and Ascension data;
(e,f) Meteoswiss JOSIE deviations with Nairobi deviation from SHADOZ tropical mean.
JOSIE-2000 data are two minute running averages.
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Popular Summary

The Southern Hemisphere Additional Ozonesondes (SHADOZ) '18-
2002 Tropical Ozone Climatology. 3. Instrumentation and Station-
to-station Variability

Anne M. Thompson,' Jacquelyn C. Witte,'” Herman G. J. Smit,> Samuel J. Oltmans,*
Bryan J. Johnson,* Volker W. J. H. Kirchhoff,” Francis J. Schmidlin®

! NASA/Goddard Space Flight Center
Code 916, Greenbelt, MD 20771
2 Also at SSAI (Lanham, MD 20706)
witte@gavial.gsfc.nasa.gov; 301-614-6047; fax - 301-614-5903
3 Research Centre Juelich, ICG-II (Institute for Chemistry and Dynamics of the
Geosphere: Troposphere), POB 1913, D-52425 Juelich, Germany
* NOAA/Climate Monitoring and Diagnostics Laboratory
325 Broadway, Boulder, CO 80305
3> INPE (Instituto Nacional de Pesquisas Espaciais)
Av Astronautos 1758, Sdo José dos Campos, Sdo Paulo, Brasil 12201-970
¢ NASA/Wallops Flight Facility,Code 972, Wallops Island, Virginia 23337

Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project
has collected more than 2000 ozone profiles from a dozen tropical and subtropical
sites using balloon-borne electrochemical concentration cell (ECC) ozonesondes.
See: <http://croc.gsfc.nasa.gov/shadoz>. It turns out that analysis of

" ozonesondes data from SHADOZ [Thompson et al., 2003a] revealed that variations
in ozonesonde technique might cause station-to-station biases in the ozone
readings. In Sept 2000 we had an opportunity to participate in the JOSIE-2000
chamber tests with all the SHADOZ methods mentioned. The purpose was to
examine SHADOZ data in the light of the chamber tests. We found that certain
variations in SHADOZ ozone profiles are accounted for by differences in solution
composition, data processing and instrument (manufacturer). Instrument bias
leads to a greater ozone measurement above 25 km over Nairobi and to lower total
column ozone at three Pacific sites compared to other SHADOZ stations at 0-20°S.
in the measurements. We also in this paper compared SHADOZ total ozone column
amounts to version 8 TOMS (2004 release). Discrepancies between sonde and
satellite datasets declined 1-2 percentage points on average, compared to version 7
TOMS but were still quite at variance (up to 8%) in total ozone at some sites.




